The role of dynamic instability in microtubule organization

نویسندگان

  • Tetsuya Horio
  • Takashi Murata
چکیده

Microtubules are one of the three major cytoskeletal components in eukaryotic cells. Heterodimers composed of GTP-bound α- and β-tubulin molecules polymerize to form microtubule protofilaments, which associate laterally to form a hollow microtubule. Tubulin has GTPase activity and the GTP molecules associated with β-tubulin molecules are hydrolyzed shortly after being incorporated into the polymerizing microtubules. GTP hydrolysis alters the conformation of the tubulin molecules and drives the dynamic behavior of microtubules. Periods of rapid microtubule polymerization alternate with periods of shrinkage in a process known as dynamic instability. In plants, dynamic instability plays a key role in determining the organization of microtubules into arrays, and these arrays vary throughout the cell cycle. In this review, we describe the mechanisms that regulate microtubule dynamics and underlie dynamic instability, and discuss how dynamic instability may shape microtubule organization in plant cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Identification of the Tao-1 Kinase as a Key Regulator of Microtubule Dynamics

.................................................................................................... 2 Statement .................................................................................................. 4 Acknowledgements.................................................................................... 5 Table of contents..................................................................

متن کامل

XMAP215: a key component of the dynamic microtubule cytoskeleton.

Microtubules are essential for various cellular processes including cell division and intracellular organization. Their function depends on their ability to rearrange their distribution at different times and places. Microtubules are dynamic polymers and their behaviour is described as dynamic instability. Rearrangement of the microtubule cytoskeleton is made possible by proteins that modulate ...

متن کامل

O-12: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

I-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

Tumor and Stem Cell Biology Tumor Suppressor NF2/Merlin Is a Microtubule Stabilizer

Cancer-associated mutations in oncogene products and tumor suppressors contributing to tumor progression manifest themselves, at least in part, by deregulating microtubule-dependent cellular processes that play important roles in many cell biological pathways, including intracellular transport, cell architecture, and primary cilium and mitotic spindle organization. An essential characteristic o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014